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The diversity of shapes and forms which meets the eye is overwhelming.
They shape our environment: physical, mental, intellectual. Theirs is a
dynamic milieu; time induced transformation, flowing with the change of
light, with the relative movement of the eye, with physical and biological
transformation and the evolutionary development of the perceiving mind.



"Our study of natural form, "the essence of morphology", is part of that wider
science of form which deals with the forms assumed by nature under all
aspects and conditions, and in a still wider sense, with forms which are
theoretically imaginable.....(On Growth and Form — D'Arcy Thompson),
"Theoretically" to imply that we are dealing with causal- rational forms.



Finite Saddle Polyhedra.



Periodic, uniform and non-uniform infinite sponge polyhedra related to a minimal
(hyperbolic) surface of g =3 which subdivides space between two diamond lattices



Floral polyhedra,
families within the g=0
domain Aaranged
according to their dual
pairs.
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Periodic Floral Infinite
Polyhedra.
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Abstract and physical 3-D space is not a passive vacuum. It is populated
with inter-relating and inter-connected entities, generating configurations
represented as diagrams with a network characteristics and hyperbolic
'force fields', and surface partitions, aptly described as sponge surface
configurations. Diagrams of this kind can represent the structure of almost
any plurality that may exist; from a reality of any battle field, cultural
economical or political, to transportation and communication systems, to
social patterns, cosmological arrays and patterns of perception, knowledge
and thought .



A periodic ordered network is formed by extended repetition
of a locally symmetrical association of vertex figures. The
resulting configuration of vertices and axes-edges could be
described as a polyhedral network, with edges terminated
at one or two vertices, each, and vertices joining n-edges
together, featuring its bonding valency, so as to conform
with the following relation: =, with E: V&Val.av. standing for
the number of Edges, Vertices and average Valency value
in a vertex, respectively. In the case of a periodic network,
the same applies to its translation unit (T.U.):
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networks come in dual pairs. Each network is uniquely determined by, and
reciprocal of its dual (complementary) companion.

ery dual pair of networks is associated with a continuous hyperbolical sponge
‘ace which subdivides the space between the two, into two complementary
-spaces.

5 trinity of the dual pair and the associated-reciprocal sponge surface is
most conspicuous, all pervading geometric-topological phenomenon of our 3-
pace, associated with its order and organization and more than anything else
2rmines the way we perceive and comprehend its structure
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3y defining as 'morphic' those processes which display a movement
oward greater 3-dimensional spatial order, symmetry or form (Whyte-
|1969) and morphology as the logical preoccupation with and
nanipulation of those processes, than the research into the nature of
1etworks and the associated sponge surfaces may be classified as
he essence of morphology.
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PREVIOUS RESEARCH EFFOR'i'S ON THE THEME OF
HYPERBOLIC SURFACES AND INFINITE POLYHEDRA
AND APPLICATIONS TO LIGHT-WEIGHT STRUCTURES




the vertex figure characteristics (geometric-symmetrical and
topological) of a given network, tightly correspond to the
topological-symmetrical characteristics of the close-pack
cells of it's dual. By proxy it may be stated that all
constituents of a given 'trinity' (the dual networks pair and
the associated sponge surface) act under the same
topological — Symmetrical regime.

-Connectivity value (C) of the two continuous dual

network graphs is one and the same for both, and is the
same as genus-(g) value of the associated sponge

surface:
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Each of the sponge surfaces may be mapped with a grid, representing
ventually a sponge polyhedron which conforms with the Euler's
heorem and formula, stating that:

/-E+F=2(1-g), with g = 2 (when V, E, F&g correspond to the number of

/ertices, Edges, Faces and the genus value of the 2d-manifold,
espectively).



> total average curvature value Y @av. of a vertex region of a
nge polyhedron may be expressed as :

‘Oav. = 27 [1- 2(1-gr) ], as derived from Descartes'
T.U.

panded) theorem, (with Vru representing the number of
tices in a translation unit, when the polyhedron is of a

1odic nature).



Nature is saturated with sponge structures on every possible
scale of physical-biological reality. The term was first adopted
in biology: "Sponge: any member of the phylum Porifera,
sessile aquatic animals, with single cavity in the body, with
numerous pores. The fibrous skeleton of such an animal,
remarkable for its power of sucking up water". (Wordsworth
dictionary).

Of course the term applied to 'spherical sponges'. It turns
out that the key characteristic of porosity is attributable to a
much wider morphological phenomenon.



With some extrapolation of the perceiving mind it is right to claim
that the sponge phenomenon, with its porosity and
permeability characteristics, is central to the physical

morphological nature of the human habitat, and represents
its defining imagery.
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ignificant venture into the field of periodic sponge surfaces and

edra dictates a systematic exploration of the uniform space lattice

in.

e as a shocking surprise to realize that in spite of the great efforts of the last
centuries or so, in the exploration of the structure of matter and space
allography included), no systematic effort was committed to exhaustively

re the network domain in the "abstract realm of the theoretically
nable".



Valency appears to be the most conspicuous and domineering
characteristic of the 3-dimensional uniform networks, of the "Trinity

type.
a) Anything less than Val.=3 does not lead to a construction of a

space lattice, and —
b) There cannot be anything of a higher valency value than the
dodecavalent Octet (close-packing of 33+3?) space lattice (?!).

1



lal density (in terms of a/a3) of the space lattice (the number of edges of
ngth of a per cubic volume of a3). As a referential basis we should have in
that the spatial density of the tetravalent diamond lattice is ~ 1,299a/a3;

f the hexavalent cubic lattice is 3,000 a/a3 and that of the dodecavalent
lattice is ~ 8,485 a/a3 (By density we refer to the lowest possible value for
inct topology). It is of great theoretical interest and probably even of
ical importance how far down and up can the density values descend
pilre.
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Although it is still too early to establish all the
possible interrelations, it seems that the parameters -
Val.; Den.; C;, org;, and ) a, are capturing the

essence of the related topological-geometrical
phenomenon.



An assumption is formed that we are dealing with
probably not more than few hundreds of uniform
space lattices in 3-D space and in view of the
valency limiting values and symmetry constraints
It seems that an exhaustive systematic search of
these configurations is tenable.



Uniform Trivalent Space Lattices

A.F. Wells in his monumental work on Structural Inorganic
Chemistry (-1962) started that...."The theory of these nets does
not appear to be known and in fact no attempt to derive them
systematically seems to have been made until comparatively
recently (P.100). As a result of these "recent" attempts he lists
three, 3-D 3- connected nets... "in which all the smallest circuits
are 10-gons"... One of these was announced again by A.F. Wells
in 1977 and rediscovered by Toshikazu Sunada (Feb. notices of
the American Mathematical society — 2008).

Looking into the issue (Jan-2008) it was quite surprising to






GEOMETRY

Crystal Math

Diamonds are rarities not just on earth
but also mathematically. The crystal
structure of diamond has two key distin-
guishing properties, notes mathematician
Toshikazu Sunada of Meiji University in
Japan. It has maximal symmetry, which
means that its components cannot be rear-
ranged to make it any more symmetrical
than it is, and a strong isotropic property,
which means that it looks the same when
viewed from the direction of any edge. In
the February Notices of
the American Mathemat-
ical Society, Sunada finds
that out of an infinite uni-
verse of crystals that can
exist mathematically, just
one other shares these
properties with diamond.
Whereas diamond is a
web of hexagonal rings,
its cousin is made of 10-
sided rings.

Sunada had originally
thought that no one had
described this object be-

“I rediscovered the crystal structure math-
ematically in rather an accidental way”
while working on another problem, Suna-
da says. After his paper was published,
chemists and crystallographers informed
him that they had long known about the
crystal, which was called (10,3)-a by A. F.
Wells in 1977. Diamond’s mathematical
twin can exist in a slightly distorted form
as an arrangement of silicon atoms in stron-
tium silicide. —Charles Q. Choi

TWO OUT OF INFINITY: Diamond and the K4, or (10,3)-a,



" UNIFORM TRIVALENT SPACE LATTICE- 105
SELF CLOSE-PACKING ;DECAGUNAL SADDLE TRIHEDRON
f
SELF CLOSE-PACKING OF/DECAGONAL
SADDLE TRIHEDRA

/
5 /

(=42




De‘ﬂ.tia—zu.‘a.|:-u‘) = 0240726615 ah>
i \ / P
=06
=452
=240

TRVALENT 548,12 SPACE LATTICE AND RELATED
SURFACE. AND UNIFORKt SPONGE POLYLEDRON




6075 9/a?

81249 Deno-usien=0.04073




DECA-TETRAUEDRON, A GELF CLOSE-PACKING SADDLE- POLYHEDRON -PACKI 2 N
GGV TE OB LT S TGS CETENE (G LN, TAF L. 2
ol ¢ /

__‘,.4'_ ' ._

Deng.ec=0769800959 a0
Dengonrarr 300y

SELF CLOGC-PACKNG SADDLE-POLYHEDRON
bl GENERATING UNIFORM TRIALENT LATTICE-4806%

IVALENT 3.102 2%, SPACE LATTICE AND e A V

a=00910439 0 I

SELF CLOSEPACKING SADDLE-POLYEDRON S CL0% PACKING SATOLE SOLEDRON
ENCRATING UNIFORM TRIALENT LATTICE4ks  EMERATING UNIORM TRINALENT SIACE L TICE 81

|
{
ff—_q‘:‘;_—i-_ 5
SELF CLOSE-PACKING SADDLE-POLYHEDRON - i -
CENCRATING UNIFDRN TL}N&LLNTThEJATrigﬁ




UNEORM TRVALENT TOPOLOGGALY DETHCT SPACE-LATT

NOTATION  COMVECTIVITY ATIAL DENSITY
I | 348174 |49 |Dsurf| OL40Z3667344 55 5 CRIEGRA SPACE LATricE
Casaefd 0.27554005

A_YUE | 4 |6 | 025584410
348K 25 |CC. [0270501784a/d
3_4816s | 5 |as) |0235I31197 4fd
34125 |13 |FC 029897272844
A- 4142 | B |ae 1020592110 o/
lae 02969009704
11 3-41%% 1B [CC 03198053 af
81 24024 | 7 | Uex 10369504 Pule]
91 2-402% 125 [C. |0297747556k4d

0] 301262 | 7 [lex. 0.437556!992%1

CH | s

] A Aletls | 7 [ Hex | 0437559199
120 5= 812w |49 |Ksufl 045227278044
Bl 26910 |13 |TeL. |04522727% o

AED- 12405 | A e [OLDGINBMAGR)
0} 368127 | 7 |Tet fOATIONSZ ald

o 3-6.10% |4 |Hex [048171%2ad

713-6%% |25 |C. |0.49307845la

B13-105 | 3 |29 [0ma0%0085eq
190 A-8%04 |17 |oa. | OBTA080Z62

0] 3-8022In| 17 [0 | P960UAad
2] 3-105 | 3 o] 06528175

107700000 a/4






IMEETON DOLRLE LAYER PENTAUSLENT SHCE LATTICES

Dersan = APEET kb

TTkE 40
PLIEDAN

5.6% SME

RRLATED SO0NGE SUREALE 44D

NFOM PCHTARLENT

[ ——
|=BeisET

B




UNEFORM VEXAVALENT SPACELATTRCES,
SELE CLOSE PACKNG
SADDLE POLYHEDRON

,== 3
Ay =

=
=231
bl=5
=96
Ew.-ﬁﬁ.[)

Fww(12  UNFORM MCXAUALENT SACE LATTICES.

CLOSE PACKING SADDLE

RSO JEXAMALENT SMCELATTICES

UNIFORM WEXAVALENT 6-&6% SPACE LATTICE AND RELATED == S = A S AL
DERIODIC SPONGE SURFACE AND UNIFDRM SPONCE POLYHEDRON. L] — \ I Z ( VP



UNIFORM 7-VALENT 7.3°5712& SPACE-LATTICE,(WITH LOCAL
ICOSAHEDRAL SYMMETRY AND GLOBAL DIAMOND LATTICE
SYMMETRY) AND RELATED SPONGE SURFACE AND POLYHEDRON

UNIFORM SEPTAVALENT SPACE-LATTICES,



)%, SADDLE POLVHEDAON,
S CCNERATING THE LATTICE.

.
> ™=
- gm:zl?érr

Mal=H
6 ) Vo= V4

i ~ : S ’ = ol /j E‘Nqaw
OCTAVALENT UNIFORM 8- SPACE LATTICE AND RELATED Fru= 180

SPONCE SURFACE AND UNIFIRM SPONCE POLVAEDAON Kr B

, UNIFORM OCTAVALENT SPACE.LATTICES.
(] ) -

| PRI s

L e w= 00

7 2= 9N

Val= o

- Ve = 20

= = - En= 788

—, V4 F‘m.: U—u-\

T — T

1;1.'

U [fl ab J




QVALENT %‘ SIUCCLATTICE

TCOGAMEDRAL SYMMETIN A CITRA MRCCINTIENT ATTVE N

SOMMETRY AND LY

psen ]\
A AR 7

N

UHFODM DOCECAUALENT 12~ SPALE LATTNE MK BLATED
SDONCE SUREACE AD UNECRM S00RE DOLYIDRON,

)

g Donie. = BAEEFESTists . R
Iy g pD))

UNIFORM DIDECARLENT 12 34% SDACE LATTICEQCTET LATTEE)
FD RELATED SPONGE SURFACE AND UNIDRM SPORGE DOLYIEDAGH

TS AR D

B e
e e Rl

UNEFOM DOECAVMLENT 12-2% SPACT LATHCE (0

M) RELATED SPONGE SUFAES A SPONGE. POLYLEDRA

Vol . _AF‘r
i s [

N S I3

N RN 2 i e
A} I y = &:6\1

- Vel =12

— 11— Y= 8

En 2

s
UNIFORM DECAVALENT (0-3%4% SPACE LATTICE 3=l 0000e
D AELATED SIONGE SURFALE ASD STNCC POLEDEA Dene-ze-l

0

I4L‘- " ! G 1D
- 5y - B
NS u-g
Vour |2
Erem 60

Lo 30

%W, I 4 W s,
SRR

1 |§( T ‘&'
Den s D050

UNIFORM [LVALENT 11-3%% SOACE LATTICE

N
AD IELATED SPONGE SURFACE AND UNIFOIM SPONGE POLYEDAON
REL

DENST Vo = 307l

TWWO INTEA.BENETRATING UNFORM OCTET SPACE LATIIES WITH EDGE-a.
WHEN JOINED TOGETYER WITH A SET O PAAALLEL o EDEES SENERATE A
UNIFORM [3-MALENT S5ALE LATTICE.



iy . o . UNIFORM QVALENT 955 SMCE-LATTICE (W LOULY L)
LWEA LT 2. 6%s SR LATTL TEAEDNAL SYNETIY AN CLOBL. QUL CONTIED LATTCE
ANDBELATED SPONGE SURFACE AND POLYHEDRON. SYMMETRY) AND RELATED SPONGE SURFACE AND POLYHEDRDN.

) Ders-six=HA0IGGZB e

i 1 UNIFORM DENTAVALENT 5-5 6 LATTICE
UNFORM T-VALENT 755722 SPACE:LATTICE W LOCAL
COSALEDRAL SOVNETAY AND CLOBHL DIMOND LATTICE N HITh CLOBAL CULE CENTRED LATTICE SWAMETRY

3 \ AND RELATED SPONGE SURFACE AND POLYMEDRON.
SYVMETRY 7D RELATED SPONSE SURFACE AND POIVUEDRON. LATED :

>
o
|_
L
=
=
>
n
-
<
4
O
i
T
<
%)
O
S,
)
Z
|_
<
L
0
L
V4
=l
<
O




niform Dodecavalent and higher valency Space Lattices or: how far
alency and spatial density values can go.

niform dodecavalent 'octet' based space lattices exist in more than one
pological version, but all come to same spatial density of 8,485281374
/as3.

"he infinite sponge polyhedron 3 gives rise to a uniform dodecavalent

| 2-34) space lattice, the density of which is 10,73918545a/a3 (!)



e quest for higher density networks led to a spatial experiment as
lows:

ts perform an edge-length translation of a given uniform n-valent
ace lattice in an arbitrary direction from position A into position B.
e resulting network is a 4-dimensional feature, the 3-dimensional
resentation of which displays a uniform(n+1)- valent lattice as
11.

e spatial density of the resulting space lattice will be:

n. (nt1) = DEHTTS) (2Eyyt1), with Ety. as the number of edges

thin the translation unit of the lattice.
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The edge length translation could be performed m times, leading to a
uniform (n+m)-valent space lattice, the spatial density of which will
amount to:

Den.(n)

(1+m)m
Er.u. *

[ 2 . ET.U. 2 ]

Den.(n+m) =

In fact m and the spatial density values can reach to infinity (!)
and that, at least theoretically, without causing any edge intersections.
These lattices represent a novel class, that of the Uniform Entangled
Space Lattices.



nclusion, the networks in 3-D space represent two basically different
otypes:

orks which could be characterized as consisting of a trinity of spatially
ciated features of a dual pair of space lattices and the reciprocal
rbolic surface partition, subdividing the space between the two,
2ntangled networks, in themselves representing few classes, the nature of
duals and the associated partition surfaces are still to be explored.

erning the 'Trinity Networks' (1), on the basis of their symmetry constraints
I space and the resulting valency range in a vertex (Val.=3+12), a

usion was drawn that their domain of all 'theoretically imaginable' uniform
o |attices is limited in scope to the extent that enables their exhaustive
matic identification and enumeration. So far nearly 180 such uniform

e |attices were identified with their density ranging from 0,24023 a/a3 (for
ivalent) to 10,7392 a/a3 (for the dodecavalent)



